Vorlesung 5b

Unabhängigkeit

Teil 3

Mehrere Zufallsvariable

(Buch S. 64-66)

Zufallsvariable X_1, \ldots, X_n mit Zielbereichen S_1, \ldots, S_n heißen

(stochastisch) *unabhängig*, falls für alle Ereignisse $\{X_i \in A_i\}$ folgende Produktformel gilt:

$$P(X_1 \in A_1, ..., X_n \in A_n) = P(X_1 \in A_1) \cdots P(X_n \in A_n)$$
.

Unabhängigkeit von abzählbar unendlich vielen Zufallsvariablen:

Sei X_1, X_2, \ldots eine Folge von Zufallsvariaben.

Definition:

Die Zufallsvariablen X_1, X_2, \ldots sind unabhängig

 $:\iff$ für jedes n sind X_1,\ldots,X_n unabhängig.

Beispiele:

Fortgesetzter Münzwurf, fortgesetztes Würfeln

Für diskrete Zufallsvariable X_1, \ldots, X_n ist die Unabhängigkeit geichbedeutend mit der Produktform der Verteilungsgewichte:

$$P(X_1 = a_1, ..., X_n = a_n) = \rho_1(a_1) \cdots \rho_n(a_n)$$

Die $\rho_i(a_i)$ sind dann die Verteilungsgewichte von X_i .